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Abstract

Alzheimer’s Disease (AD) conversion prediction from the mild cognitive impairment (MCI)

stage has been a difficult challenge. This study focuses on providing an individualized MCI

to AD conversion prediction using a balanced random forest model that leverages clinical

data. In order to do this, 383 Early Mild Cognitive Impairment (EMCI) patients were gathered

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Of these patients, 49 would

eventually convert to AD (EMCI_C), whereas the remaining 334 did not convert (EMCI_NC).

All of these patients were split randomly into training and testing data sets with 95 patients

reserved for testing. Nine clinical features were selected, comprised of a mix of demo-

graphic, brain volume, and cognitive testing variables. Oversampling was then performed in

order to balance the initially imbalanced classes prior to training the model with 1000 estima-

tors. Our results showed that a random forest model was effective (93.6% accuracy) at pre-

dicting the conversion of EMCI patients to AD based on these clinical features. Additionally,

we focus on explainability by assessing the importance of each clinical feature. Our model

could impact the clinical environment as a tool to predict the conversion to AD from a prodro-

mal stage or to identify ideal candidates for clinical trials.

Introduction

Alzheimer’s Disease (AD) is a progressive, degenerative brain disorder that leads to nerve cell

death and tissue loss in the brain. Currently, there are no treatment plans that prevent the pro-

gression of AD, and this has led to increased emphasis on being able to predict AD at an earlier

stage. Mild Cognitive Impairment (MCI) is an intermediary stage between being cognitively

normal and having AD where 32% of MCI patients will go on to develop Alzheimer’s Disease

[1]. This makes the MCI stage an ideal target for early prediction as studies point to early diag-

nosis as being key to potentially delaying the overall progression of AD [1]. Early detection at

the MCI stage can assist in clinical trial enrollment and provide more specific treatment plans

when more effective ones do become available. Our focus in this study was to target the earliest
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subset of MCI patients (EMCI), as that subset is the furthest from an AD diagnosis and would

thus provide a more beneficial prediction. As a result, it is of high importance to accurately

determine which EMCI patients will develop AD.

For this reason, an accurate, ensemble learning model that can aid in clinical decision mak-

ing is necessary to help ascertain the patient’s prognosis. Random Forest A random forest algo-

rithm is a supervised learning algorithm that randomly creates and merges multiple decision

trees and that has been proficient with classification problems [2]. In our work, this Random

Forest a random forest model is used to determine which patients will convert to AD (our

EMCI_C class) and those that will not convert (EMCI_NC) against an imbalanced data set. As

well as determining how to best balance the data, assessing which clinical features are most rel-

evant for conversion prediction is fundamental to our problem. Through Random Forest our

random forest model we are able to see which of our clinical features has the most significant

impact at both the model and the individual prediction levels. This allows us to interpret the

individual results better to provide more clinical significance. In this study, we sought to (1)

identify significant features from clinical data; (2) build a random forest classification model

from an imbalanced data set of those features; (3) determine the prediction accuracy of our

model.

Also, we observed the associations between individual predictors and their importance to

the problem. By attempting different feature groupings, we were able to distinguish the most

crucial feature types. As a result of this approach, our work provides a clinical decision-making

tool that can predict MCI-to-AD conversion with high accuracy and interpret the results

meaningfully. We envision that this work will provide an accurate tool for predicting conver-

sion probability from MCI to AD and further understand the impact of neuropsychological,

biomarker, and demographic features.

Related work

A review on the use of random forest models in classifying Alzheimer’s Disease was provided

by Sarica et al. [3]. Their review consisted of 12 studies that were primarily focused on the clas-

sification of Alzheimer’s Disease stages from MRI images. The accuracy across these studies

ranged from 53% to 96%, depending on whether they were performing multiclass classification

or not. These studies were also focused on the direct stage classification of AD vs. Normal

Controls vs. MCI, rather than the prediction of AD from an earlier stage.

Another review by Weiner et al. [4] summarized 49 ADNI papers. These papers did target

the prediction of AD but were also focused mainly on MRI data. These were occasionally sup-

plemented by clinical data or other imaging data (PET), with most studies using a support vec-

tor machine (SVM) model. A few of the studies [5–7] did use the random forest algorithm as

well and will be compared, alongside the SVM implementations, against our model’s

performance.

Huang et al. [8] proposed a predictive nomogram that combined image features, clinical

factors, and AB concentration to predict the conversion of MCI to AD. They also explored the

associations between the different selected features and reported on their significance. Their

goal was to examine the associations at both a macro and micro level to better understand the

underlying patterns.

Moore et al. [9] proposed using a pairwise selection from time-series data to predict AD

conversion. The authors analyzed the relationships between data point pairs at different times

using a random forest algorithm. They leveraged a mix of demographic and genetic data and

achieved a classification accuracy of 73% as a result.
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Lebedev et al. [6] used a combination of structural MRI scans along with a few clinical fea-

tures from the ADNI data set to achieve an MCI-to-AD conversion accuracy of 81.3%. Their

work also saw a sharp increase in accuracy by using a Random Forest algorithm rather than a

Support Vector Machine. One advantage in their study is that they validated the model exten-

sively outside of the ADNI data set and found no substantial drop in accuracy, suggesting a

good foundation for clinical implementation.

Rana et al. [10] created a model deemed MudNet, which combined both clinical data and

MRI imaging for MCI-to-AD conversion prediction. They used many neuropsychological

assessment scores alongside T1-weighted structural MRIs to achieve a conversion accuracy of

69.8%. Their work also provided a time-to-AD conversion classification which differentiated

between high-risk (AD conversion within two years), and low-risk people (AD conversion

greater than two years) at a 66.9% accuracy.

Thushara et al. [11] used a random forest algorithm for multi-class Alzheimer’s classifica-

tion. Their work sought to distinguish between AD, MCI, cMCI (Converted MCI), and normal

controls using largely biomarker features. They achieved a multi-class classification accuracy

of 69.33% with an MCI-to-AD conversion prediction (cMCI class) accuracy of 47.19%.

Methods

Alzheimer’s disease neuroimaging initiative data

All data used for this paper were obtained from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database and included patients from their ADNI-1, ADNI-2, and ADNI-GO stud-

ies [12]. “The ADNI was launched in 2003 as a public-private partnership with the primary

goal of testing whether serial magnetic resonance imaging (MRI), positron emission tomogra-

phy (PET), other biological markers, and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive impairment (MCI) and early Alzhei-

mer’s disease (AD)” [12]. Early Mild Cognitive Impairment (EMCI) patients were eligible for

our study as long as they had follow-up appointments for greater than a year. The EMCI subset

consists of patients that are 5-7 years before a possible AD diagnosis and are identified by the

results of the Wechsler Memory Scale Logical Memory II test. These EMCI patients were then

subdivided into two groups based on whether they would eventually be diagnosed with Alzhei-

mer’s Disease or not. We chose to represent these groups as EMCI_C, for our AD conversion

group, and EMCI_NC for our stable group. From the ADNI variables, the Clinical Dementia

Rating was used to make this determination based on the value of their last visit’s diagnosis.

The remaining 1806 EMCI visits were then used as a starting point for training prior to aug-

mentation. Of these, 198 belonged to the EMCI_C class while 1608 visits were from EMCI_NC

subjects. Overall, our study consisted of 383 EMCI patients (shown in Fig 1), with 49 belong-

ing to the EMCI_C group and the remaining 334 within the EMCI_NC group. These patients

were then randomly split such that 75% (288 patients) of our selected patients were used to

train the random forest model, with the remaining 25% (95 patients) used for validation test-

ing (shown in Table 1).

Clinical features selection

The clinical features that were used to train our random forest model included a mix of genetic

biomarkers (APOE4), physical biomarkers (hippocampal and ventricular volume), four neuro-

psychological scale scores (ADAS13, ADAS11, FAQ, MMSE), and the patient’s demographic

information (age, race). Many different variations of ADNI features were tested for model

inclusion; however, these nine features were found to provide the best overall fit. Additionally,

related studies have used similar features and found the mix of biomarker and
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neuropsychological scale scores to be an ideal selection for AD prediction [13]. The ADNI fea-

tures that we have used per training group can be seen in Table 2.

Random forest classification model

Random forests are an ensemble learning method for classification, regression, and other tasks

that operate by constructing a multitude of decision trees at training time and outputting the

class that is either the mode of the classes, in regards to a classifier, or the mean prediction of

the individual trees for a regression model. Since random forests consist of a collection of deci-

sion trees that are trained with different data subsets and then averaged, this allows them to be

tolerant of the problem of overfitting.

For our work (as seen in Fig 2), the random forest classifier has two potential classes eligible

for its output, EMCI_C (patients that converted to AD) and EMCI_NC (patients that did not

convert to AD). These classes are voted on from each individual tree, which is then aggregated

to provide an overall probability of AD conversion. Fig 3 shows an example of an individual

tree. Random Forest classifiers also allow for individual input variable importance to be evalu-

ated. As part of our work, we built an ad hoc prediction script that evaluates this variable

importance at both the model and individual prediction levels. Initially, while training the

model, this evaluation helped us determine which variables were most relevant for model

inclusion. After the model has been trained, this variable importance ranking then helps to

interpret the individual prediction results Table 3 shows the rankings of 6 features, 9 features

Fig 1. Participants’ age and gender distribution.

https://doi.org/10.1371/journal.pone.0244773.g001

Table 1. EMCI data set for machine learning.

EMCI_C EMCI_NC

Subject# 49 334

Visit# 198 1608

Record# after Oversampling 1608 1608

Training Data 1206 1206

Testing Data 402 402

https://doi.org/10.1371/journal.pone.0244773.t001

PLOS ONE Random forest model for feature-based Alzheimer’s disease conversion prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0244773 April 29, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0244773.g001
https://doi.org/10.1371/journal.pone.0244773.t001
https://doi.org/10.1371/journal.pone.0244773


Table 2. ADNI clinical features and EMCI patient characteristics used for random forest model training.

ADNI Feature EMCI_C EMCI_NC 6FT 9FT 13FT

Subject# 49 334

Time to AD Conversion 5.02 years –

Time in Study 12 years 12 years

Description Mean SD Mean SD

DX Diagnosis – – – – – – –

Demographic Info
PTRACCAT Patient Race – – – – ✔ ✔ ✔
AGE Patient Age 73.5 6.47 71.1 7.49 ✔ ✔ ✔

Genetic Biomarkers
APOE4 #E4 alleles of APOE .9 .71 .4 .46 – ✔ ✔

Physical Biomarkers
Hippocampus Hippocampal volume 6875.2 947.45 7334.1 910.20 – ✔ ✔
Ventricles Ventricular volume 39282.7 21031.66 34504.6 21394.49 – ✔ ✔

Neuropsychological
ADAS13 13-item AD Assessment Scale 15.8 6.02 13.3 5.41 ✔ ✔ ✔
ADAS11 11-item AD Assessment Scale 9.7 4.12 8.5 3.29 ✔ ✔ ✔
FAQ Functional Activities Questionnaire 4.1 4.38 1.82 2.50 ✔ ✔ ✔
MMSE Mini-Mental State Examination 28.1 1.58 28.3 1.71 ✔ ✔ ✔
RAVLT_immed #words memorized over 5 trials 34.5 8.39 40.3 11.40 – – ✔
RAVLT_learn #words learned between trials 1-5 4.7 2.47 5.3 2.42 – – ✔
RAVLT_forg #words forgotten between trials 5-6 5.1 2.54 4.1 2.64 – – ✔
RAVLT_perc_forg %words forgotten between trials 5-6 60.7 29.13 44.0 29.36 – – ✔

EMCI_C the converter group, EMCI_NC the stable group, FT Feature Training

https://doi.org/10.1371/journal.pone.0244773.t002

Fig 2. Model workflow.

https://doi.org/10.1371/journal.pone.0244773.g002
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and 13 features as well as the fractional ranks that are the average of the ordinal ranks for these

three feature groups.

Results

Demographic and clinical characteristics

As can be seen across Fig 1 and Table 2, 383 EMCI patients were gathered from the ADNI

database, of which 49 would convert to AD (EMCI_C), and 334 would not convert

(EMCI_NC). The patients’ average age was 71.4, and 55.6% of the patients were men. There

was a significant difference in age between the two groups (P < .05) according to the t-test,

however this feature’s difference was not statistically significant between classes when measur-

ing feature importance. Additionally, a subsequent model was trained on a reduced data set

that eliminated Age outliers and accuracy was only reduced by.3%.

Also shown in Table 2 are the genetic and physical biomarkers. The APOE4 and hippocam-

pal volume differences were statistically significant between the EMCI_C and EMCI_NC

groups, whereas the ventricular volume was not. For the neuropsychological scale scores, the

ADAS13 and the FAQ features were significantly different (P< .05). The ADAS11 and the

Fig 3. Example of a small random forest tree within our model.

https://doi.org/10.1371/journal.pone.0244773.g003

Table 3. Comparison of feature importance ranking by feature groups.

Feature 6FT Ranks 9FT Ranks 13FT Ranks Fractional Ranks

AGE 1 1 1 1

FAQ 2 4 3 3

ADAS13 3 5 6 4.6

ADAS11 4 6 8 6

MMSE 5 8 12 8.3

PTRACCAT 6 9 13 9.3

Hippocampus - 2 2 2

Ventricles - 3 4 3.5

APOE4 - 7 9 8

RAVLT_immed - - 5 5

RAVLT_perc_forg - - 7 7

RAVLT_forg - - 10 10

RAVLT_learn - - 11 11

https://doi.org/10.1371/journal.pone.0244773.t003
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MMSE features were found not to be significantly different. The relationships between our fea-

tures are further seen in Fig 4 as a Correlation Matrix.

Model performance

A workflow of our random forest model can be seen in Fig 2. This summarizes the training

methodology as well as the prediction and variable importance output. After our pre-process-

ing steps, we train a 1000 tree random forest model on 2412 exam visits against different fea-

ture groups to compare their results. While initially, using all 13-features seemed to provide

the highest accuracy at 91.6%, we found that by removing the RAVLT features, our accuracy

rose to 93.6% in the 9-feature group. We also tested a 6-feature group, which removed the

RAVLT variables as well as the biomarker data; however, this saw the worst accuracy of the

three groups at 89.2%.

After running these feature group variations through our random forest training process,

we decided to implement the same training data into a support vector classifier (SVC), an

XGBoost classifier, and a Logistic Regression model for comparison (See Table 4). As these are

commonly used for this problem, we considered this to be a reasonable comparative measure

to the efficacy of our random forest model.

Support vector classifiers attempt to find the separating hyperplane that maximizes the dis-

tance of the closest points to the boundary of the class. These are typically effective in high

dimensional spaces and have seen a fair amount of usage within the AD conversion prediction

domain [14, 8]. In both the 9-feature and 13-feature groups, we found that our random forest

model outperformed our SVC implementation (93.6% vs. 90% and 91.6% vs. 90%, respec-

tively). The SVC did show higher accuracy than the 6-feature RF model; however, the AUC

was inferior on all SVC variations. The difference in AUC between our best RF variation (96%

AUC) and our best SVC variation (54% AUC) is shown in Fig 5. One observation when

observing our SVC model is that it struggled to predict the negative class (conversion to AD)

and predominantly chose the majority class. This was not the case with our balanced random

forest model which was able to appropriately distinguish between both classes.

Fig 4. Random forest correlation matrix.

https://doi.org/10.1371/journal.pone.0244773.g004

PLOS ONE Random forest model for feature-based Alzheimer’s disease conversion prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0244773 April 29, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0244773.g004
https://doi.org/10.1371/journal.pone.0244773


XGBoost is an implementation of gradient boosted decision trees that has seen success in

structured data classification. While not being common in the AD conversion prediction

space, we wanted to compare how our feature-selection would be handled by its algorithm.

XGBoost resulted in the second-best overall method behind our top RF model and showed sig-

nificantly better performance than the SVC and Logistic Regression implementations. For the

6-feature group, XGBoost outperformed our RF model (89.8% vs. 89.2%). However, while per-

forming better than SVC and Logistic Regression, the XGBoost model still saw less accuracy

than the RF model at both the 9 and 13 feature groups, as seen in Table 4. When comparing

AUC, one can see how well XGBoost performed (89%) in relation to SVC (54%) and Logistic

Regression (75%).

Finally, Logistic Regression was the last method that we leveraged for comparison. Logistic

Regression calculates the probability of an event occurrence and can be used when the target

variable is categorical. For this model, we trained individual versions of 6, 9, and 13 features

but found them to all exhibit less accuracy than our RF model. Additionally, while its AUC

(75%) underperformed in contrast to RF and XGBoost, it did significantly better than our best

SVC model (54%). Still, this did not result in a model that was close enough to warrant further

consideration for our AD conversion problem.

As mentioned previously, our 9-feature random forest implementation with an accuracy of

93.6% and an AUC of 96% against a 383-patient data set represents our best model. While also

using the ADNI data set, Grassi et al. [14] could achieve an AUC of 88% with an SVM that

made predictions 3 years prior to AD onset. Huang et al. [8] also attained 80% accuracy and

84.6% AUC with an SVM model against the ADNI data set leveraging both clinical and MRI

data looking 5 years prior to AD onset. As our approach differs by using Early Mild Cognitive

Impairment patients (EMCI) rather than the broader MCI grouping used by other studies, we

can predict conversion from 5-7 years prior to the onset of AD. Our outcome is state-of-the-

art when comparing our accuracy and AUC to the previously published work for MCI-to-AD

prediction as shown in Table 5.

Table 4. Performance of random forest vs support vector classifier.

Model/Feature Accuracy Precision Recall F1 Score AUC p-value

Random Forest

6-Features 0.892 0.907 0.980 0.942 0.88 0.91

9-Features 0.936 0.952 0.978 0.965 0.96 0.71

13-Features 0.916 0.916 0.998 0.955 0.93 0.82

Support Vector

6-Features 0.900 0.900 1 0.948 0.52 -

9-Features 0.900 0.900 1 0.948 0.54 -

13-Features 0.900 0.900 1 0.948 0.55 -

Logistic Regression

6-Features 0.894 0.902 0.990 0.944 0.76 -

9-Features 0.892 0.903 0.985 0.942 0.75 -

13-Features 0.896 0.904 0.990 0.945 0.75 -

XGBoost

6-Features 0.898 0.904 0.993 0.946 0.87 -

9-Features 0.920 0.930 0.985 0.957 0.89 -

13-Features 0.907 0.921 0.980 0.950 0.88 -

https://doi.org/10.1371/journal.pone.0244773.t004
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Balancing the data

As a result of our imbalanced data set, where 12.8% of the patients belonged to the minority

class (EMCI_C); we perform a random oversampling algorithm that generates new samples

with replacement from the EMCI_C class. Replacement ensures that samples can be selected,

added to the augmented data set, and then returned to the non-augmented data as eligible for

further random sampling. For our study, we choose a minority strategy such that all samples

would be generated solely from the existing EMCI_C data. This augmentation provides a bal-

ance between the two classes so that the majority class does not take over during model train-

ing. Through this process of oversampling our number of minority class visits become

equivalent to that of the majority. This allows for the model to be trained against 2412 exam

visits (1206 per class) rather than only the 1354 from the original data set train/test split.

Table 1 further demonstrates the evolution of the data set after oversampling.

Fig 5. Receiver operating characteristic curves for random forest and comparison models.

https://doi.org/10.1371/journal.pone.0244773.g005

Table 5. State of the art MCI-to-AD prediction.

Approach Data #Subject Model Estimator MCI-AD(%) Predict Train

ACC AUC Year Time

Proposed (ours) Clinical ADNI(383) RF 1000 93.6 96 5-7 2.98 sec

Grassi [14] Clinical ADNI(550) SVM - - 88 3 2 days

Huang [8] Clinical/MRI ADNI(290) SVM 1000 80 84.6 5 -

Albright [13] Clinical ADNI(1737) MLP - - 86.6 5 -

Moore [9] Clinical ADNI(1627) RF 60 73 82 5 -

Ghazi [15] MRI ADNI(742) RNN 1000 - 76 5 340 sec

Rana [10] Clinical/MRI ADNI(559) CNN 100 69.8 83 5 -

Thushara [11] Clinical ADNI(NA) RF 100 47.2 - 5 -

https://doi.org/10.1371/journal.pone.0244773.t005
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We first compared our random oversampling method against an under-sampling method

that targeted the majority class and found a 3.1% increase in accuracy via the oversampling

process (see Table 6). Our approach was also compared to class weight modifications, but they

performed poorly in comparison to our minority strategy. After determining that oversam-

pling was the preferred method we began to compare against the established oversampling

methods.

SMOTE, or rather Synthetic Minority Oversampling Technique, was the first of these meth-

ods that we evaluated against. SMOTE relies on generating new information from the minority

class population, rather than duplicating from that population. This is done by pulling from a

random minority class sample, and then also finding a random k-nearest neighbor from that

sample. The new data is then created in a space between those two samples [16]. However,

against our EMCI data set this was found to reduce accuracy by.63% compared to our original

technique.

Borderline SMOTE was also considered as this modifies the SMOTE technique to generate

new data along the decision boundary of the two classes, rather than randomly between two

samples [17]. While we did see a 0.22% improvement over SMOTE, it still fell short of our

Random Oversampler.

Finally, we attempted the Adaptive Synthetic Sampling (ADASYN) method as a means of

comparison. This deviates from the other SMOTE methods by generating new data based on

the density of the data, rather than the decision boundary or k-nearest neighbor. ADASYN

focuses its synthetic data creation within the low density feature space regions and creates less

data within the high density regions [18]. For our data, this method produced the second best

results and outperformed both SMOTE and Borderline SMOTE. The overall accuracy compar-

ison of these oversampling techniques can be seen in Table 6.

Assessment of model feature importance

One advantage of using the random forest algorithm is that feature importance can be assessed

at both the model and individual prediction levels. The model feature importance of our three

feature groupings can be seen in Figs 6–8. As a random forest algorithm deals with different

combinations of features in each of its’ decision trees, this allows for the feature importance to

be calculated based on how much the prediction error increases [9]. This is done by first calcu-

lating the individual nodes’ importance per tree as seen in Eq 1. Within this, nij represents the

importance of node j, wj being the weighted samples reaching node j, and Cj as the impurity

value of the node. Once each node’s importance has been determined, the feature importance

per tree is calculated per Eq 2 and is then normalized to a value between 0 and 1 per Eq 3. This

result is then averaged across the entire forest before being divided by the total number of trees

Table 6. Comparison of imbalanced data set sampling methods.

Method Accuracy

Random Over sampler 93.60

SMOTE 92.97

Borderline SMOTE 93.19

ADASYN 93.30

https://doi.org/10.1371/journal.pone.0244773.t006
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[19].

nij ¼ wjCj � wleftðjÞCleftðjÞ � wrightðjÞCrightðjÞ ð1Þ

fii ¼
P

j:node j splits on feature inij
P

k2 all nodesnik
ð2Þ

normfii ¼
fiiP

j2 all featuresfij
ð3Þ

RFfii ¼
P

j2 all treesnorm fiij
T

ð4Þ

For our 6-feature model, the three most important features are Age, FAQ, and ADAS13.

For our top-performing 9-feature model, the top features are Age, Hippocampus, and Ventri-

cles. Finally, for our 13-feature model, Age, Hippocampus, and FAQ score are the most impor-

tant. The presence of hippocampal and ventricular volume towards the top explains why the

absence of those features in our 6-feature model resulted in diminished accuracy. By adding in

the RAVLT features, our accuracy improved, but these were redundant with the other neuro-

psychological scale scores, so they were removed for our final model. Age was consistently

seen as the best conversion predictor, which corresponds to the increased risk of AD at an

older age [20]. Race (PTRACCAT) was routinely at the lowest feature importance between our

models, but we did observe a decrease in accuracy upon its’ removal. This is likely due to race

having very little correlation with the other included features, whereas some neuropsychologi-

cal scores exhibited signs of possible overlap (RAVLT).

For our best model, we also assess the permutation importance seen in Eq 3. This reduces

the high cardinality bias seen in the feature importance charts by permuting against a held-out

test set. This is done by each feature column being permuted against a baseline metric that was

Fig 6. 6-Feature model feature importance.

https://doi.org/10.1371/journal.pone.0244773.g006
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initially evaluated against the data set. The permutation importance is then established as the

difference between the baseline metric and the feature column permutation. From this, we see

that Age and FAQ maintain their high importance. However, APOE4 is now significantly

more relevant in regards to the test set prediction (see Fig 9).

Table 7 shows the average standard deviation differences from the mean out of the subjects

that the model predicted incorrectly. We omit our PTRACCAT (Race) feature into this analy-

sis, given that it is not a continuous variable. In total, 20 EMCI_C ground truth subjects and 9

EMCI_NC ground truth subjects were incorrectly classified. By analyzing the standard devia-

tion differences, we can determine which feature was most abnormal compared to the average

model prediction for that given class.

We do this by establishing the data set means and standard deviations per feature for both

the EMCI_C and EMCI_NC classes. We then take each misclassified patient’s feature values

and subtract them by the corresponding mean, prior to dividing them by that feature’s stan-

dard deviation value. This allows us to see which features were the most unusual at an individ-

ual patient level. Coupled with the feature importance ranking this gives us clearer insight into

the model’s prediction rationale. For example, the MMSE feature was 2.37 standard deviations

away from its EMCI_C mean, which contributed to our model misclassifying those cases as

Fig 8. 13-Feature model feature importance.

https://doi.org/10.1371/journal.pone.0244773.g008

Fig 7. 9-Feature model feature importance.

https://doi.org/10.1371/journal.pone.0244773.g007
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EMCI_NC. Of the EMCI_C misclassifications, MMSE proved to be the most misleading fea-

ture. However, we still saw higher overall accuracy by including it within our model because of

its relatively low feature importance.

Out of the EMCI_NC misclassifications, there was less clarity as to which feature was prob-

lematic. However, we do observe a standard deviation increase in our neuropsychological test

scores across the nine misclassifications. This is indicative of the model believing these sub-

jects’ test scores to be similar to those of the EMCI_C class and thus making the false predic-

tion. In future work, we will explore whether knowing these misleading instances can help our

model’s accuracy, but currently, it appears that these are outliers within the ADNI dataset.

Assessment of individual predictors’ feature importance

For the individual level, we can see which features specific to that patient made the largest dif-

ference contribution to their prediction. An example of these prediction contributions can be

seen in Fig 10 based on the test patient’s features provided in Tables 8 and 9. In this case, our

model correctly predicted that this patient would convert to AD with an overall confidence of

90.4%. This confidence is a reflection of the aggregate of all of the individual trees’ votes within

our forest.

Fig 9. 9-Feature model permutation importance.

https://doi.org/10.1371/journal.pone.0244773.g009

Table 7. Average standard deviation difference for incorrect predictions by ground truth class and feature.

Record# Age APOE4 ADAS11 ADAS13 MMSE FAQ Ventricles Hippocampus

EMCI_C 20 1.90 2.20 1.30 1.38 2.37 0.82 0.80 1.00

EMCI_NC 9 1.74 2.26 2.87 2.46 2.68 2.61 1.13 2.76

https://doi.org/10.1371/journal.pone.0244773.t007
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From Fig 10 and the contributions listed in Tables 8 and 9, we see that ventricular volume

was the most essential predictive feature for this patient as it contributed 24.2% towards the

model’s decision prediction. This was closely followed by their Functional Activities Question-

naire (FAQ) score which contributed 21.2% of the prediction. Race (PTRACCAT) was the

only feature that contributed to the wrong prediction, albeit only a 0.3% prediction contribu-

tion for this patient. These individual feature importances are calculated in an identical man-

ner to the model feature importance formulas above, however they do not include the model-

Fig 10. Feature importance example for an individual patient.

https://doi.org/10.1371/journal.pone.0244773.g010

Table 8. Example features and prediction contributions (9FT PC) for EMCI_C cases.

EMCI_C Class Correctly Classified Misclassified

9 Features Mean Subject C1 Subject C2 Subject C3 Subject C4

Value PC Value PC Value PC Value PC

Age 73.5 68 0.11 77 0.118 69.1 0.008 73 0.337

FAQ 4.1 0 -0.036 10 0.212 4 0.007 3 0.039

ADAS13 15.8 20 0.042 17 0.022 10 -0.008 9 0.025

ADAS11 9.7 13 0.039 9 0.022 5 -0.006 4 0.013

MMSE 28.1 29 0.006 26 0.057 26 0.023 29 -0.011

PTRACCAT – 7 -0.001 7 -0.003 7 0.003 7 0

Hippocampus 6875.2 7853 0.173 6901 0.025 5576 0.158 7835 -0.02

Ventricles 39282.7 38627 0.145 24285 0.242 35280.12 -0.006 32379 -0.031

APOE4 0.9 2 0.248 1 0.096 2 0.138 0 -0.022

PC: Sum (AVG) 0.726 (0.08) 0.79 (0.087) 0.317 (0.035) 0.33 (0.036)

https://doi.org/10.1371/journal.pone.0244773.t008
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level aggregation. In this sense, it allows us to interpret precisely why the decision trees chose a

certain classification.

Tables 8 and 9 show the prediction contributions from subjects across both the EMCI_C

and EMCI_NC classes. The PC column represents the amount of each feature’s contribution

to the overall prediction. A positive value indicates the contribution towards the ground truth

class, whereas a negative value denotes the contribution towards the incorrect class. The PC’s

overall sum and average for the EMCI_C class’s correctly classified cases are higher than 0.7

and 0.08 while ones for the EMCI_C class are lower than 0.061 and 0.008, respectively. The PC

sum and average are strong indicators for the classification. As Table 7 is helpful for interpret-

ing possibly misleading features at the model level, this individual PC metric allows us to better

understand the model’s decision making on a per subject basis.

Discussion

We have demonstrated that a random forest model can take clinical features and accurately

predict MCI-to-AD conversion probability. Our RF classifier showed superior performance

compared to competing SVM, XGBoost, and Logistic Regression implementations, including

our own. It is also worth noting that the best models looked at all MCI patients, rather than the

earlier EMCI subset. This gives our model the strength of predicting from 5-7 years prior to

the onset of AD. Our results show that clinical features can also outperform MRI-based mod-

els. This is important as obtaining neuropsychological scores, a significant subset of our chosen

features can be far more affordable and less intensive than obtaining a patient’s MRI imaging.

With a more flexible approach, the expectation is that this predictor would be easier to deploy

into a clinical setting.

In our experiments with the feature groupings, we found neuropsychological scores to be

the most reliable and essential feature subset as we always experienced lower model accuracy

with their exclusion. Performing tests on individual predictors also showed their weaknesses

as each predictor demonstrated improved accuracy when coupled with an additional predic-

tor. Even the neuropsychological scores by themselves exhibited signs of subjectivity, which

were remediated by including biomarker and demographic features.

Additionally, our methods for oversampling an initially imbalanced data set can be of use

throughout the medical research domain. With many medical data sets consisting of similar

target class imbalance, our process enhances bagging algorithms by augmenting more samples

Table 9. Example features and prediction contributions (9FT PC) for EMCI_NC cases.

EMCI_NC Class Correctly Classified Misclassified

9 Features Mean Subject NC1 Subject NC2 Subject NC3 Subject NC4

Value PC Value PC Value PC Value PC

Age 71.1 59 0.047 81 0.001 79.8 0.106 63.6 0.009

FAQ 1.82 4 -0.037 1 0.056 5 0.099 17 0.158

ADAS13 13.3 16 -0.001 21 -0.005 17 -0.013 37 0.346

ADAS11 8.5 13 -0.002 14 0.009 12 0.019 27 0.208

MMSE 28.3 29 0.015 27 -0.008 30 -0.002 19 -0.025

PTRACCAT – 7 0.001 7 0.008 7 -0.006 7 -0.002

Hippocampus 7334.1 8303 0.023 6288 0.015 5437 0.256 7223.86 -0.021

Ventricles 34504.6 22275 -0.03 30260 -0.001 69583 -0.043 35280.12 -0.019

APOE4 0.4 0 0.045 1 -0.002 0 -0.041 0 -0.037

PC: Sum (AVG) 0.061 (0.006) 0.073 (0.008) 0.375 (0.041) 0.617 (0.068)

https://doi.org/10.1371/journal.pone.0244773.t009
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for the minority classes. For our purpose, this was only tested within a binary classification

problem, however we will be extending this technique to multi-class problems.

One limitation of this study is that all of the patients were from the ADNI data set. While

our accuracy was verified by splitting our data across multiple instances, we did not test the

population outside of the ADNI participants. The inclusion of other data sets into our model

would help account for even more significant variations and will be a target for future work.

In the future, we would like to combine this clinical features dependent model with our

prior diffusion tensor imaging model [21] in order to create an ensemble predictor that can

handle a large variety of available patient information. This would allow for greater flexibility

for patient input data while maintaining high accuracy in the prediction. Additionally, it is

currently difficult to differentiate between the sub-types of dementia when a patient presents

with cognitive and memory decline [22]. This can lead to an inaccurate treatment plan if the

patient is misdiagnosed. Having the ability to predict additional sub-types at such an early

stage would help significantly with pharmacological management [23]. Researching the differ-

ences between these sub-types based on this study’s clinical features will be a subject of our

future work.

In summary, we created a balanced random forest model based on multiple features to pre-

dict the MCI-to-AD conversion probability. In addition, we determined which features were

most important for the overall model, as well as for individual patient predictions. We also

took advantage of oversampling methods to better balance the target classes. As early detection

is critical for both clinical trial enrollment and cost-effective treatment plans, we expect our

work to help in clinical diagnosis as well as establishing treatment timelines. Our random for-

est model achieved state-of-the-art performance with an accuracy of 93.6% and showed that

the combination of demographic, neuropsychological scores and biomarker features could be

used to predict which EMCI patients are at a higher risk of AD.
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